Übungen aus Mathematik II

SS 2014

Übungsblatt 5

08.04.2014

DI Roland Wagner, S2 524

DI Markus Ableidinger, S2 619

E-mail: roland.wagner@ricam.oeaw.ac.at

E-mail: markus.ableidinger@jku.at

Tel.: 0732 2468 4112

Tel.: 0732 2468 4167

https://www.dk-compmath.jku.at/Members/dgerth/vorlesung-mathematik-fur-chemiker-ii-ss14/

25. a) Begründen Sie, warum die Determinaten der folgenden Matrizen gleich 0 sind.

$$A = \begin{pmatrix} 0 & 1 & -2 \\ 4 & 2 & 0 \\ 0 & -2 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 5 & 3 & 0 \\ 7 & -4 & 0 \\ 1 & 17 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 14 & -2 & 3 \\ 0 & 0 & 0 \\ 3 & 7 & -5 \end{pmatrix}.$$

b) Bestimmen Sie mit Hilfe der Determinantenfunktion, für welche Werte von p die folgenden Vektoren linear unabhängig sind:

$$\begin{pmatrix} 1\\4\\3 \end{pmatrix}, \begin{pmatrix} 2\\0\\p \end{pmatrix}, \begin{pmatrix} -4\\1\\1 \end{pmatrix},$$

c) Berechnen Sie die Determinante von

(a)
$$\begin{pmatrix} x & e^x \\ e^{-x} & x \end{pmatrix}$$
, (b) $\begin{pmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{pmatrix}$, (c) $\begin{pmatrix} a+b & a^2-b^2 \\ 1 & a-b \end{pmatrix}$

für $x, a, b \in \mathbb{R}$ und $\alpha \in [0, 2\pi)$.

26. Formen Sie die Matrizen mit geeigneten Spalten- und Zeilenoperationen so um, dass Sie die Determinante einfach berechnen können.

$$A = \begin{pmatrix} 4 & 2 & -1 \\ 3 & 1 & 0 \\ 7 & -2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 3 & 7 & 0 \\ 4 & 0 & 1 & -2 \\ -2 & 3 & 0 & 0 \\ 0 & 2 & 4 & 1 \end{pmatrix}.$$

27. (a) Gegeben seien

$$A = \begin{pmatrix} 3 & 2 & -1 \\ 2 & 1 & 4 \\ 5 & 0 & 7 \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} 1 \\ 6 \\ -2 \end{pmatrix}, \qquad \vec{x} \in \mathbb{R}^3.$$

Lösen sie das LGS $A\vec{x} = \vec{b}$ mit dem Gaußschen Eliminationsverfahren.

(b) Gegeben seien

$$K = \begin{pmatrix} 0 & 2 & -2 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad \vec{f} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}, \qquad \vec{u} \in \mathbb{R}^3.$$

Lösen sie das LGS $K\vec{u}=\vec{f}$ mit dem Gaußschen Eliminationsverfahren.

28. Gegeben seien

$$A = \begin{pmatrix} 2 & 1 & 4 & 6 \\ 5 & -3 & 0 & 1 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix}, \qquad \vec{x} \in \mathbb{R}^4.$$

Lösen sie das LGS $A\vec{x} = \vec{b}$ mit dem Gaußschen Eliminationsverfahren.

29. Gegeben seien

$$A = \begin{pmatrix} 3 & 2 & 1 \\ -2 & 4 & 0 \\ 1 & 1 & -2 \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix}, \qquad \vec{x} \in \mathbb{R}^3.$$

Lösen sie das LGS $A\vec{x} = \vec{b}$ mit Hilfe der inversen Matrix A^{-1} .

30. Die Anzahl der unabhängigen Teilreaktionen einer chemischen Reaktion, die m Substanzen betrifft, kann aus den Konzentrationen dieser m Substanzen zu p+1 verschiedenen Zeitpunkten $0, t_1, t_2, \ldots, t_p$ ($p \ge m, t_k > 0$) berechnet werden. Dazu bildet man die $m \times p$ -Matrix $C = c_{ik}$ mit $c_{ik} = c_i(t_k) - c_i(0)$, wobei $c_i(t)$ die Konzentration der i-ten Substanz zum Zeitpunkt t bedeutet. Der Rang von C gibt dann die Anzahl der unabhängigen Teilreaktionen an. Man bestimme diese Anzahl unter der Annahme, dass folgende Werte von Konzentrationen gemessen wurden:

7

			t_2			
$c_1(t)$	4,0	2,8	1,9	1,3	1,0	0,7
$c_2(t)$	3,5	2,9	2,7	2,6	2,4	2,2 .
$c_3(t)$	0	0,3	0,8	1,2	2,3	4,1
$c_1(t)$ $c_2(t)$ $c_3(t)$ $c_4(t)$	0	1,5	2,1	2,4	1,8	0,5