Übungen aus Mathematik II

SS 2014

Übungsblatt 1

11.03.2014

DI Roland Wagner, S2 524

DI Markus Ableidinger, S2 619

E-mail: roland.wagner@ricam.oeaw.ac.at

E-mail: markus.ableidinger@jku.at

Tel.: 0732 2468 4112

Tel.: 0732 2468 4167

https://www.dk-compmath.jku.at/Members/dgerth/vorlesung-mathematik-fur-chemiker-ii-ss14/

1. Bilden Sie die auf Länge 1 normierten Vektoren und skizzieren Sie Vektor \vec{a} .

$$\vec{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, \qquad \vec{c} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \qquad \vec{d} = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}.$$

2. Bestimmen Sie die Winkel zwischen den Vektoren:

(a)
$$\binom{2}{3}$$
 und $\binom{0}{1}$, (b) $\binom{17}{4}$ und $\binom{3}{2}$,
(c) $\binom{-8}{11}$ und $\binom{0}{0}$, (d) $\binom{2}{0}$ und $\binom{3}{3}$.

- 3. Gegeben seien die Punkte A = (5,7,2) und B = (1,-3,-1).
 - (a) Geben Sie den Ortsvektor von A und seine Länge an.
 - (b) Berechnen Sie den Vektor \overrightarrow{AB} .
 - (c) Berechnen Sie die Länge des Vektors \overrightarrow{AB} und den Einheitsvektor in Richtung \overrightarrow{AB} .
 - (d) Berechnen Sie den Abstand des Punktes A vom Koordinatenursprung.

4. Gegeben seien:
$$\vec{a} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -2 \\ 1 \\ 7 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 1 \\ 8 \\ -3 \end{pmatrix}$.

- (a) Berechnen Sie $(\vec{a} \times \vec{b}) \times \vec{c}$ und $\vec{a} \times (\vec{b} \times \vec{c})$.
- (b) Berechnen Sie $(\vec{a} + \vec{b}) \cdot \vec{c}$ und $\vec{a} \cdot (\vec{b} \vec{c})$.
- 5. (a) Seien $\vec{a} = \begin{pmatrix} -0.5 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 2 \\ -1/3 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$, berechnen Sie $2\vec{a} 3\vec{b} + \vec{c}$ und zeichnen Sie diesen Vektor.

(b) Seien
$$\vec{a} = \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 8 \\ 2 \\ -3 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} -3 \\ 4 \\ 1 \end{pmatrix}$. Berechnen Sie $-4\vec{a} + \vec{b} + 3\vec{c}$.

6. Berechnen Sie jeweils das Kreuzprodukt:

(a)
$$\begin{pmatrix} 2\\1\\3 \end{pmatrix}$$
, $\begin{pmatrix} 0\\2\\-3 \end{pmatrix}$, (b) $\begin{pmatrix} -2\\1\\2 \end{pmatrix}$, $\begin{pmatrix} 4\\-2\\3 \end{pmatrix}$, (c) $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$, $\begin{pmatrix} -1\\-2\\3 \end{pmatrix}$.